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How much can we say about the wave statistics in
a sea state, given information about the wave
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Datasets used in study
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Subset of WAM spectra selected for simulation with HOSM

= 26 280 WAM spectra

= 6200 3-hour HOSM-simulations over a spatial
domain of about 2.5 x 2.5 km
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Statistics from HOSM simulations
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= Simulations cover very large area
— Rogue waves (n,qx > 1.25H,) are observed in almost all simulations

— Stable estimate of kurtosis

= (Clear correlation between kurtosis and extreme crests
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Prediction of kurtosis — machine learning

= Can kurtosis be better predicted if we include additional spectral
properties and allow for more complex relationships between
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Prediction of kurtosis — similar sea states

= Predict kurtosis by considering
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Validation against field data
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Point measurements - sampling variability dominates
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Predicting increased risk of rogue waves from wave spectrum - conclusions

= Sea-state kurtosis (and hence increased risk of rogue waves) can in principle be “forecasted”
from knowledge about the wave spectrum

— Wave steepness is (not surprisingly) the most important factor
— ...but including information such as BFI and spectral bandwidths improves prediction

— Machine learning methods that are not restricted to simple parametrizations > Even better
predictions

= However:
— The predictability of rogue waves/kurtosis in single-point measurements is non-existing

— Hence, the relevance of such prediction seems to be very limited for marine structures, since
sampling variability will always dominate. Unless the area of interest is quite large.

= Further work: Validate prediction of kurtosis using stereo-camera space-time measurements,
where sampling variability is reduced
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